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Abstract
Based on the experimentally-found existence of two superconducting gaps in
MgB2 (one gap associated to the boron σ -states and the other to the boron
π-states), the different contributions to the transport properties, electrical
conductivity and Hall coefficient were studied using the full potential-linearized
augmented plane wave method and the generalized gradient approximation.
Four different relaxation times were needed to adjust the electrical conductivity
and Hall coefficient to experimental values. MgB2 doping was analysed in
the rigid band approximation; this permitted a detailed study of the partial
substitution of magnesium for aluminium (Mg1−x Alx B2). Other substitutions
such as AB2 (A = Be, Sc, Zr, Nb and Ta) are also discussed. The MgB2 σ -bands
(boron σ -states), which are associated to the large gap, are very anisotropic at
EF, while the π bands have very little anisotropic character. In Mg1−x Alx B2,
Tc diminishes with Al content; the other compounds are not superconductors or
have a low Tc. In this work it was found that with electron doping, such as Al
substitution, the σ -band conductivity decreases and the corresponding bands
become less anisotropic. The σ -band contribution for BeB2 and ScB2 at EF is
very small and the anisotropy is much lower. For Zr, Nb and Ta there are no σ -
bands at EF. These results give a clear connection between superconductivity
and the character of the σ -band, band conductivity, and band anisotropy. This
gives a plausible explanation for the diminution of Tc with different doping of
MgB2.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Soon after superconductivity was discovered in MgB2, the strong anharmonicity of the boron
in-plane phonons was found. These anharmonic vibrations were originally proposed as one of
the possible explanations for the high transition temperature in this compound (Yildirim et al
2001). Another possibility was the influence of the two-dimensional character exhibited by the
crystal structure on the electronic patterns (Nature 2001), but electronic structure calculations
(Satta et al 2001, de la Mora et al 2002) and experimental measurements (Masui and Tajima
2003) showed that this material is essentially a bulk conductor with a ratio of 1–10 (the
theoretical value is ≈1 and the experimental one is ≈3–10) for the anisotropy in the electrical
conductivity in the a/c-directions. Soon after, MgB2 produced more surprises; Liu et al
(2001) found theoretical evidence that there should be two superconducting gaps. One of
them is associated to the px,y-orbitals (σ -bands): these σ -orbitals have a high a/c anisotropy;
the other gap, associated to B:pz and Mg-orbitals, has a three-dimensional character. The
existence of two gaps has been experimentally confirmed through tunnelling spectra (Eskildsen
et al 2002, Iavarone et al 2002, Schmidt et al 2002, Szabó et al 2001). In this paper the
dimensionality of the differentσ and π bands is studied by density functional theory (DFT). The
σ -bands were found to be highly anisotropic, while the π-bands were found to be essentially
three-dimensional. The band contributions, two of σ -character and two of π-character, were
analysed separately with different relaxation times. By trying to reconcile the experimental
and theoretical results it was possible to define relative relaxation time values. Finally, with
these relaxation-time values it was possible to have a complete theoretical description of the
experimental results.

Using the rigid band approximation the separate σ -band and π-band contributions to the
electrical conductivity and the Hall coefficient are discussed as function of electron doping in
Mg1−x Alx B2. The compounds BeB2 and ScB2 are analysed as a function of the anisotropy and
the in-plane conductivity of the σ -bands. For ZrB2, NbB2 and TaB2 the excess of d-electrons
provided by the Zr, Nb and Ta atoms fills up and perturbs the anisotropic σ -boron bands,
therefore destroying the high-Tc superconductivity.

2. Computational procedure

The electronic structure calculations were done using the WIEN2k code (Blaha et al 2001),
which is a full potential-linearized augmented plane wave (FP-LAPW) method based on DFT.
The generalized gradient approximation of Perdew et al (1996) was used for the treatment of
the exchange–correlation interactions. The energy threshold to separate localized and non-
localized electronic states was −6 Ryd. For the number of plane waves the used criterion
was Rmin

MT (muffin tin radius) × Kmax (for the plane waves) = 9. The number of k-points used
was 19 × 19 × 15 (320 in the irreducible wedge of the Brillouin zone). The muffin-tin radius
for magnesium is 1.8 a0 and for boron it is 1.68 a0 (a0 is the Bohr radius). The charge
density criterion with a threshold of 10−4 was used for the convergence. A denser mesh of
100 × 100 × 76 (34 476 in the irreducible wedge) was used for the evaluation of the electrical
conductivity and the Hall coefficients.

3. Crystal and electronic structure

The crystal structure of MgB2 is composed of alternating planes of boron and magnesium.
The boron planes have a honeycomb arrangement (like graphite but with no displacement)
and between two contiguous planes there are the Mg atoms on the line passing through the
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Figure 1. (A) Fermi surface of MgB2 (Kortus et al 2001). (B) Band structure of MgB2. �–M–K–�

and A–L correspond to the ab-plane directions and �–A and L–M to the c-direction. The bands
with large circles are of σ -character, while the ones with dots are of π -character.

centre of the boron hexagons, that is, Mg atoms form a hexagonal arrangement. MgB2 has the
so-called AlB2 structure (P6/mmm, space group 191), with a = 3.0864 Å, c = 3.5215 Å.

The band structure at EF largely reflects the crystal symmetry, which can be clearly seen
from the Fermi surface structure (figure 1(A)) and band structure (figure 1(B)): there are two
almost-vertical surfaces around and close to the �–A line; their distance is less than 0.31 of
the �–M distance. The corresponding bands are mainly of B:px,y character, having almost no
magnesium contribution (σ -bands). These bands have little slope in the c-direction (�–A and
L–M) while in the plane (�–M–K–� and A–L) the slope is large. The corresponding electrical
conductivity, as we will prove, should be mainly in the ab-plane, being almost insulating in
the c-direction.

There are another two Fermi surfaces forming a horizontal honeycomb-like tubular
surfaces, with the holes around the �–A line; the separation to this line is more than 0.80
the �–M distance. One of the surfaces lies in the �–M–K plane, surrounding the M–K line;
the other is in the A–L–H plane and surrounds the L–H line. The corresponding bands are
formed by B:pz with a small magnesium contribution (de la Mora et al 2002) (π-bands); these
bands are three-dimensional or bulk-like, with a large slope at EF in all directions.

Since the Fermi surfaces can be easily separated in k-space the corresponding contribution
to the transport properties can also be independently calculated; in the relaxation time
approximation the transport properties (conductivity and Hall coefficient) depend on the band
structure at EF only (Allen et al 1987).
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4. Conductivity and Hall coefficient expressions

Within the framework of the relaxation time approximation the transport properties, for one
band (n), can be estimated from band structure results, using the following expressions: (de
la Mora et al 2002, Allen et al 1987, Hamada et al 1990).

σ n
αβ = e2τ n(εF, T )

�0

∫
d3k vn

α(k)vn
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= e2τ n
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∫
d Aα

∑
i

S(vni
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where the summation over i runs over all the crossings at the Fermi energy of band n. Here
τ n is the relaxation time, �0 is the normalization volume, S(vn

α(kF)) is the sign of vn
α(kF) and

d3k = d Aα dkα, where Aα is the area perpendicular to kα. The second line of equations (1)
and (2) is obtained from the properties of the delta function, and from them σ n

αβ and σ n
Hαβγ can

be easily calculated.
In expressions (1) and (2) σ n

αβ is the conductivity and σ n
Hαβγ the Hall conductivity (note

that the symbol σ without subscripts is used to refer to bands). Due to the Onsager relations,
σHαβγ = −σHβαγ , and the crystal’s hexagonal symmetry only two terms are independent:
σHayc(≡σHc) and σHyca = σHcay(≡σHa), where the last subscript is the direction of the mag-
netic field (α, β and γ are perpendicular axes in σ n

Hαβγ and y is the axis perpendicular to a on
the plane).

The simplest extension to many bands is (Schulz et al 1992b, Ashcroft and Mermin 1976)

σαβ =
∑

n

σ n
αβ

σα =
∑

n

σ n
α

σHγ =
∑

n

σ n
Hγ .

(3)

In terms of equations (1)–(3) the Hall coefficient is (Allen et al 1987, Hamada et al 1990)

RHγ = σHγ

σασβ

. (4)

The solution for RH is not constrained by a variational principle, so it should be regarded as
qualitatively and not a quantitatively adequate model (Schulz et al1992b). Nevertheless the RH

calculations of Allen and Schulz (1993) for ReO3 were within 30% of the experimental data;
Schulz et al (1992a) using calculated CPA-values of Butler (1984) had a very good qualitative
(almost quantitative) agreement with experimental values.

As can be seen from equations (1) and (2) the conductivity and the Hall coefficient can be
calculated, except for τ n , from the band structure. Note that τ n contains all the temperature
dependence, except for the temperature smearing at the Fermi energy, which was approximated
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to a δ-function (Allen et al1988). At higher level of approximation additional anisotropy enters
from the anisotropy of scattering, but from the cases studied by Allen and co-workers (Allen
1987, Allen et al 1986, 1988) this turns out to be a surprisingly small effect (a few per cent),
at least for electron–phonon scattering at T � θD.

Since the terms σ n
α /τ n (≡δn

α) and σ n
Hα/(τ n)2 (≡δn

Hα) play an important role, they will be
called conductivity factor and Hall conductivity factor. The conductivity σ n

α is related to the
plasma frequency (wn

p ) and to the Fermi velocity (vn
F) by (Allen et al 1987, 1988, Ashcroft and

Mermin 1976)

δn
α ≡ σ n

α

τ n
= (wn

pα)2

4π
= e2 N(εF)(vn

Fα)2, (5)

where N(εF) is the density of states. With the use of this equation the expression for the
conductivity σα is in agreement with that found by Mazin and Antropov (2003), whose
expressions are beyond LOVA (lowest-order variational approximations, Pinski et al 1981).

5. Results and discussion

Regarding the problem of the anisotropic character observed in the band structure of MgB2

and its consequences on the normal state transport properties of this intermetallic compound,
there is a simple and intuitive relation arising from the conductivity expression (equation (1a)).
Besides the relaxation time, there are two contributions to conductivity in such equation; one of
them is the area vector dA (which is on the Fermi surface), and the other one is v (=h̄−1∇kε)
at the neighbourhood of the Fermi level. Since both dA and v are parallel vectors, then
va/vc = d Aa/d Ac; therefore dσ n

a /dσ n
c = va d Aa/vc d Ac = (d Aa/d Ac)

2 = (va/vc)
2. This

expression does not hold for the integrated conductivities, σ n
a /σ n

c , but it should be approximate
for simple surfaces:

σ n
a

σ n
c

≈ v2
a

v2
c

≈ A2
a

A2
c

, (6)

where Aα is the Fermi surface area seen from the α-direction, σ n
α is the conductivity of band

n in the same direction and vn
α is the maximum velocity in each direction, which usually falls

in a k-point of the Fermi surface crossed by the band-structure plots. This expression (6) is
exact for the Fermi surface of parabolic bands (ε = k2

x/d2 + k2
y/e2 + k2

z / f 2).
Expression (6) gives an intuitive feeling about the anisotropy of the conductivity for a

given band; that is, the asymmetry can be estimated by observing the geometry of the Fermi
surface or by comparing the slope of the involved bands in different directions. For example,
for the case of the MgB2 bands taken individually the ratio (σa/σc)/(Aa/Ac)

2 is very close
to unity, between 0.83 and 1.04, this is not only at EF but in the energy range [−1.2, 1.5 eV]
(see the rigid band approximation in section 5.2). For all four bands together, with τ n = τ , it
deviates more (0.89–1.8) and this is due to the different character of the σ - and π-bands. This
shows that for simple Fermi surfaces expression (6) seems to be a good estimate.

Now, we use this expression to analyse MgB2; the σ -Fermi surfaces have a tubular form
(figure 1(A)), therefore seen from above (c-direction) a small area is displayed in the form
of a ring, while from the perpendicular direction (ab-plane) a much larger area is spanned.
Therefore a very anisotropic conductivity results from these Fermi surfaces. On the other
hand the π-surfaces display a large area in all directions and their associated contribution to
conductivity should be quite isotropic.
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Table 1. Conductivity factors (columns 2 and 3) and Hall conductivity factors (columns 4 and 5)
in the a- and c-directions and for all bands in MgB2. Arbitrary units are used.

Conductivity Hall

δ a c a c

σ1 0.197 0.0038 0.028 1.99
σ2 0.198 0.0055 0.022 0.86
π1 0.203 0.475 1.86 0.28
π2 0.500 0.498 −2.88 0.88

5.1. Relaxation times τ

As mentioned above, the Fermi surfaces can be easily separated in k-space, therefore the
conductivity can be calculated for each of the bands independently. There are four bands at
EF, two σ -bands (σ1 and σ2) and two π-bands (π1 and π2). From the band structure plots it
can be deduced that σ1 (lower in energy) is the one closer to the �–A line (see for example
�–M in figure 1(B)) and π1 (lower in energy) is in the �–K–M plane (K–M in figure 1(A)).

Using equations (1a) and (2) for the separate bands the conductivity factor and Hall
conductivity factor for MgB2 were calculated; the relative values are shown in table 1.

We have found only two experimental reports for σc in the literature, Eltsev et al (2003)
and Masui et al (2002). Only Eltsev et al (2003) reports both conductivity and Hall coefficient
measurements: they find for the conductivity ratio (CR) σa/σc ≈ [3.4, 3.6], and that this
ratio is almost temperature independent; for the Hall conductivity ratio (HCR) they find
σHa/σHc ≈ [−0.3,−0.8].

Masui and Tajima (2003) claim that since MgB2 preferentially grows along ab-directions,
the thickness of a single crystal along the c-axis has not been enough for accurate out-of-plane
transport measurements; the measurements give a CR between 3 and 10.

Using the values of table 1 and with only one relaxation time (τ n = τ ) then CR = 1.12 and
HCR = −0.275. This is incompatible with the experimental results (see figure 2(A)), therefore
it is necessary to have a more flexible model. A first improvement can be achieved by having
two relaxation times: τσ (for the σ -bands) and τπ (for the π-bands). Using equations (3)–(5),
then HCR versus CR can easily be calculated using the values of table 1. Now there is an extra
degree of freedom and the possible values form a curve; this is shown in the top line (2τ ) of
figure 2(A). This curve is still far from the experimental values.

As mentioned above, the Hall conductivity expression (equation (2)) is correct within 30%
of the experimental data (Allen and Schulz 1993); with this in mind the components of the
HCR, δn

Hα (equation (3)), were adjusted by 30% and 60% to try to fit the experimental values
(figure 2(A)). These large adjustments still do not come close to the experimental values.

Since two relaxation times are not enough to fit the experimental date within the 30%
error then a further improvement is to have separate relaxation times τ n for each band. These
relaxation times will be parameterized by x , y and z:

τσ1 = (1 − x)τ σ τ σ2 = xτ σ τ σ = (1 − z)τ
τπ1 = (1 − y)τπ τπ2 = yτπ τπ = zτ

(7)

where 0 � x , y, z � 1. With this parameterization τ cancels in CR and HCR and only three
free parameters (x , y and z) remain to adjust the experimental values. Since the experimental
CR is almost temperature independent (Eltsev et al 2003), then, from equation (3), τσ /τπ

should also be temperature independent; therefore the only temperature dependence should be
on τ , and not on x , y or z.
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Figure 2. (A) Hall coefficient ratio (HCR) RHa/RHc versus conductivity ratio (CR) σa/σc . The
vertical line shows the experimental values (Eltsev et al 2003). The point at (1.12, −0.275), 1τ ,
is for one relaxation time τ n = τ . The top curve, 2τ , is for two relaxation times (τσ and τπ ); the
two lines below have 30% and 60% adjustments (these curves are only drawn on the side of the
experimental values). The following three curves, 4τ(opt), give the optimized HCR (see the text):
the top one is without correction, the others are for 30% and 60% corrections. (B) HCR versus x
and y for CR = 3.5 (see the text). Note that from equation (7), x ≈ 0 implies τσ1 � τσ2, x ≈ 1
implies τσ1 � τσ2; the same holds for y, τπ1 and τπ2.

The experimental CR value of Eltsev et al (2003), 3.5, can be taken into account to
eliminate z, and the HCR can now be plotted as a function of x and y; this is shown in
figure 2(B). In most of the x and y ranges the theoretical HCR value is positive; only for values
y ≈ 1 it is negative. The experimental HCR values are in the range from −0.3 to −0.8; this
implies τπ2 � τπ1, and the minimum in figure 2(B) is at x ≈ 2/3 (τσ2 ≈ 2τ σ1), y ≈ 1.

Using these new optimized values, x ≈ 2/3, y ≈ 1, the HCR can now be plotted as
a function of z, or even better as a function of the CR. This curve is shown in figure 2(A)
as 4τ(opt). As was done for the two relaxation times, τσ and τπ , the δn

Hα within the HCR
can be also modified by 30% and 60%. The corresponding curves are shown in figure 2(A)
below the 4τ(opt) curve. Now the high temperature values of Eltsev et al (2003) (CR = 3.4,
HCR = −0.3) are reproduced. The low temperature values (CR = 3.6, HCR = −0.8) are
within ≈ 40% correction.

In figure 2(B) the variation of the HCR with x is not as drastic as with y and other τσ2:τ σ1

ratios (that is, x �= 2/3) could approximately reproduce the CR, HCR experimental values, in
particular x = 1

2 ; that is, τ σ1 = τ σ2(=τ σ /2).
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Figure 3. Conductivity factors (δn
γ ) of different bands: (A) a-direction, (B) c-direction and (C)

a/c-ratio. The σ -band contribution is very small in the c-direction, therefore the values in (B) are
multiplied by 50 and in (C) they are divided by 50.

It is worth noticing that having one relaxation time for the σ -bands and two for the π-bands
would reflect, on one hand, the very similar behaviour of the σ1- and σ2-bands and, on the
other hand, the quite different behaviour of the π1- and π2-bands (see figures 3 and 4).

Putti et al (2003b) found values of thermal conductivity relaxation times; τσ
Q and τπ

Q
(these are related to the electrical conductivity values, τσ and τπ , and in LOVA they are equal,
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Figure 4. Hall conductivity factors (δn
Hγ ) for the different bands: (A) the magnetic field in the

plane, (B) magnetic field in the c-direction. The σ -band contribution is very small in the a-direction,
therefore the values in (A) are multiplied by 50.

Pinski et al 1981). These values strongly depend on the sample quality, which for the case
of Putti et al was due to the purity of the chemical elements used. Their τσ

Q/τπ
Q ratios for the

different samples were 0.6 and 1.2.
In the 4τ(opt) curve of figure 2(A), the high temperature value (300 K) of Eltsev et al (2003)

corresponds to z = 0.127 (equation (7)), which corresponds to τσ ≈ 6.9τπ . With x ≈ 2/3,
y ≈ 1 all the relative relaxation times are found: 2τσ1 ≈ τ σ2 ≈ 2.3τπ2 � τπ l . For the
particular case of x = 1

2 (τ σ1 = τ σ2) and τπ2 � τπ1 only two effective relaxation times, τσ1

and τπ2, would remain with τσ1 ≈ 3.4τπ2.
The above discussion is based on:

(a) a single experimental result (Eltsev et al 2003), in which, as noted by Masui and Tajima
(2003) the σc conductivity measurements are not very reliable (the ratio σa/σc is between 3
and 10), and

(b) an approximate Hall conductivity expression (equation (4) and the discussion that follows).

Consequently the results for the relaxation times cannot be taken as solidly founded. The
explanation of the Hall anisotropy remains a challenge for both theorists and experimentalists
and has to be considered an unsolved problem.
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5.2. Al-doping

MgB2 electron doping can be studied with the rigid band approximation, which consists in
shifting EF but leaving the band structure unchanged. This doping would resemble the effect
associated of replacing Mg by Al. That is, since Al has one electron more, additional electrons
are added to the system. Mg and Al are almost completely ionized in these compounds (de la
Mora et al 2002); this replacement has little effect on the band structure, except for the position
of EF.

Satta et al (2001) have done a similar study in (Mg, Al)B2, but in their treatment they
worked with all the bands together and only one relaxation time τ , whereas in the present study
the different bands are analysed separately and with different relaxation times. The results
presented here (both the total conductivity and the Hall coefficient), using the same τ n = τ

for all the bands, are in close agreement with those of Satta et al (they calculated the plasma
frequency, which can be related to the conductivity using the equation (5)).

From the band structure plot (figure 1(B)) it can be seen that shifting down EF the σ -
and π-bands come closer in k-space (see �–M and �–K), therefore the corresponding Fermi
surfaces also come closer and at ∼−1.2 eV the bands cross and the Fermi surfaces cannot be
easily separated any more. On the other hand, raising EF separates the σ - and π-surfaces; the
σ -surfaces disappear at 0.82 eV.

The transport properties will be calculated in the [−1.2, 1.5 eV] range. The EF shift is
measured in eV, while doping is measured in electrons (e). The eV scale can be transformed
to electrons using the density of states plot; the new range now becomes [−0.97, 0.62e] and
the σ -band edge (0.82 eV) becomes 0.43e. In the Al fully-doped compound, AlB2, the energy
shift would be ∼2 eV (de la Mora et al 2002). The range will not be extended to 2 eV since new
three-dimensional bands appear at ∼1.7 eV. These bands would unnecessarily complicate the
analysis since at such high doping range the material is no longer superconducting (Bianconi
et al 2002, Putti et al 2003a, Slusky et al 2001).

On increasing the doping (figures 1(A) and (B)) the σ tubular Fermi surfaces shrink
towards the �–A line until they disappear at the band edge; therefore their contribution to
the conductivity diminishes (and finally disappears). This is reflected in the conductivity
calculations, figures 3(A) and (B). In the a-direction, σσ1

a and σσ2
a are very similar, and above

EF they are almost identical. For the c-direction (σσ1
c , σσ2

c ) they are not so similar, but still
they have the same trend; this is reflected in the σσ i

a /σσ i
c ratio (figure 3(C)).

From figures 3(A) and (B) it can be observed that the π1-band conductivity decreases as
well, but it does not disappear,while for π2 it increases. From this perspective, the σ1-, σ2- and
π1-bands are hole-like, while the π2-band is electron-like. All the bands have contributions
to the conductivity in the a-direction of the same order, while in the c-direction the σ -band
contribution is much smaller, about 1/50 of the π-band contribution.

The σ -Hall conductivity factor δσn
Ha is small, 1/50 of the π-band contribution (figure 4(A)).

The σ1, σ2 and π1 are all positive while π2 is negative; that is, the former ones are hole-like
and the latter one is electron-like, in agreement with the conductivity results above and those
given by Masui and Tajima (2003). On the other hand, figure 4(B) shows that in δn

Hc all the
contributions are of the same order, but all positive; that is, all are hole-like.

As a matter of comparison, for the cuprates the calculated a/c-ratio in the conductivity
is of the same order as for the σ -bands on MgB2. For example, for La1.85Sr0.15CuO4 it
is 27.5, for YBa2Cu3O7 the a/c-ratio is 16 and for the b/c-ratio is 7 (Allen et al 1988).
The experimental anisotropy is orders of magnitude larger (102–105). Additionally to this
anisotropy, the temperature dependence of ρc is in most cases semiconducting, dρc/dT < 0,
whereas that of ρab is metallic, dρc/dT > 0. For MgB2 both resistivities, ρa and ρc, are
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Figure 5. σσ
a for doped MgB2, Mg0.5Al0.5B2 and AlB2 using the rigid band approximation, the

horizontal axis was multiplied by 1.23. The experimental Tc-values of Putti et al are also plotted.

metallic. It is important to note that MgB2 has a different superconductivity mechanism from
the cuprates: it is very similar to the traditional BCS materials, although it is multiband.

As can be seen, the anisotropy in the conductivity is present in all high-Tc superconductors,
including MgB2. This last material seems to be in this category due to the fact, as was mentioned
above, that superconductivity is sensitive to the band origin of the electrons; that is, the large
superconducting gap is associated to the highly anisotropic σ -bands.

What will be analysed in the following sections is the σ -band conductivity for different
compounds. Since the σ1- and σ2-bands have a very similar behaviour then it is not important
what τ σ1/τσ2 ratio is taken, and τ σ1, τ σ2 will be assumed to be equal (τ σ1 = τ σ2).

From the results shown in figure 3, it can be seen that by increasing the electron doping the
σ -band contribution diminishes and the anisotropy character of these bands also diminishes.
Therefore the high-Tc superconductivity in this material should disappear with electron doping,
since the main electron–phonon coupling is due to boron in-plane phonons (Yildirim et al2001).

This can be more clearly observed when MgB2 is doped with aluminium (Bianconi et al
2002, Putti et al 2003a, Slusky et al 2001); here Tc diminishes with the Al content. Putti et al
(2003a) found a linear relationship between Al content and Tc: extrapolating Tc would reach
0 at ∼0.6Al. Bianconi et al (2001, 2002) found a similar relationship, but with a change of
slope at 0.33Al and Tc → 0 at ∼0.53Al. de la Peña et al (2002) could reproduce the results of
Bianconi et al (2001), with the assumption that Tc ∼ number of σ -carriers. Our calculations
for σσ

a diminishes almost linearly with a small downward curvature and vanishes at 0.43e
(figure 3(A)).

5.3. Adjustment to the rigid band approximation

This small value, 0.43e, is due to the rigid band approximation; MgB2, Mg0.5Al0.5B2 and
AlB2 were calculated (the Mg0.5Al0.5B2 compound was modelled with a supercell, alternating
the Mg and Al layers in the c-direction), and with the rigid band approximation three parallel
curves for σσ

a -conductivities were found. The σσ
a -values for MgB2 are exact for zero doping;

for Mg0.5Al0.5B2 they are exact for 0.5e and for AlB2 they are exact for 1e. Expanding the
horizontal axis by 1.23, but keeping these σσ

a -values fixed (for instance, for Mg0.5Al0.5B2 the
axis is expanded to the left and to the right of 0.5e), the three curves overlap (figure 5).
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The former change of scale from eV to doping (e) using the density of states appears to
be naive, since other effects should be acting with Al-doping, such as charge transfer, and the
relative positions of the σ - and π-bands change; by multiplying by 1.23 these effects seem to
be taken into account, since now the three curves approximately match. With this adjustment
of scale the rigid band approximation can be used to interpolate between these 0, 1

2 and 1
doping-values. It is important to note that the rigid band approximation does not work so well
for σσ

c , σπ
a and σπ

c . This is because these conductivities have a vertical component; σσ
c is the

conductivity in the c-direction and is quite small (∼1/50σσ
a ), therefore the change of Mg for

Al should have an enlarged effect; for σπ
a and σπ

c there is a B:pz orbital and the Al-doping
has a direct effect. For σσ

a all is within the boron planes, and the change in conductivity just
reflects the change of σ -carriers.

The experimental Tc-values of Putti et al are also plotted in figure 5; for these experimental
values Tc closely follows σσ

a . It can also said that σσ
a follows the experimental values of

Bianconi et al (2001, 2002), although the sharp drop at 0.33Al is not reproduced.
On the other hand, if this material could be doped with holes, such as in (Na, Mg)B2,

the opposite effect would be produced, and Tc should increase since σσ
a and the anisotropy

increases; de Coss (2004) calculated the σ -Fermi surface area and they also predicted a rise of
Tc when Na substitutes Mg in MgB2.

5.4. Other compounds with AlB2-structure

Satta et al (2001) and Medvedeva et al (2001) also calculated the band structure of BeB2 (not a
superconductor and an interesting compound to compare with) and found it to be very similar
to MgB2. There are important differences: (a) EF is higher, closer to the σ -band edge, (b) the
σ -band slope in the c-direction is significantly higher, while in other the directions it is similar.
The first point (a) could be thought of as e-doping,as was discussed for aluminium (figure 2(A)),
and the σ -conductivity should be lower; our calculations give σσ

a (BeB2) = 0.58σσ
a (MgB2),

and the second point (b) implies a lower anisotropy, (equation (6)); the calculations give
σσ

a /σσ
c = 7.5 (for MgB2: σσ

a /σσ
c = 43).

ScB2, on the other hand, shows a low Tc (∼1.5 K); this compound is similar to BeB2 in
relation to the σ -bands (Medvedeva et al 2001). The important difference is that Sc contributes
with one d-electron. Our calculations show large changes in the morphology of the bands and
Fermi surfaces. EF is very close to the σ -band edge; that is, it is higher than in BeB2, but it
is not above the σ -band edge as in AlB2. The σ -band slope in the c-direction is even higher
than in BeB2, and in this case the Fermi surfaces are almost spherical. The change in values is
more drastic than in BeB2: σσ

a /σσ
c = 3.9, σσ

a (Sc) = 0.12σσ
a (Mg) (The Fermi surfaces were

observed with XCrySDen, Kokalj 1999, using the output of WIEN2k).
The reduction of σ -carriers and the reduction of the σ -band anisotropy in BeB2 and ScB2

in comparison with MgB2, could be important factors that may account for the large reduction
of Tc.

ZrB2, NbB2 and TaB2 have the same AlB2 crystalline structure, but their electronic
structure is quite different since they have several d-electrons, not just one as ScB2. For
instance, there are no anisotropic bands at EF (de la Mora et al 2002), and the d-electrons add
more charge to the compound, shifting EF higher. Even more, the d-electrons also interact
with the B:px,y orbitals; that is, there are no pure B:σ orbitals anymore, as was the case for
MgB2. From the perspective of the present discussion these metallic borides are not expected
to be high-Tc superconductors; TaB2 is not a superconductor. For ZrB2 Gasparov et al (2001)
found Tc = 5.5 K (this result has not been confirmed by other experimental papers), and for
NbB2Escamilla et al (2004) found Tc = 9.8 K. The superconductivity of these materials may
be originated from a different mechanism.
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The anisotropy of the B:σ -bands in these AB2 compounds, by itself, may not be responsible
for the superconductivity, but it indicates the amount of contamination of the A-element
orbitals. This contamination should also perturb the in-plane boron phonons, which probably
become weaker. This shows the indirect influence of the anisotropy in the destruction of the
superconductivity.

6. Conclusions

Conductivity measurements show that MgB2 is a fairly isotropic conductor, but the fact that
there are two superconducting gaps, one for the σ -bands and the other for the π-bands, gives a
totally different perspective; that is, the electrons seem to distinguish which band they belong
to. For this reason the different contributions to the electrical conductivity and Hall coefficients
were analysed. This separation of contributions permitted the study of the individual band-
anisotropy and their consequences on the transport properties. The σ -Fermi surfaces are
very anisotropic, and the associated electrical conductivity is also anisotropic; in contrast, the
π-Fermi surfaces are fairly isotropic.

In order to fit the experimental conductivity and Hall results, different relaxation times
were needed, one for each band, with relative values τσ1(=τ σ2) ≈ 3.4τπ2(�τπ1).

The conductivity anisotropy measurements and theoretical Hall expressions are not yet
accurate enough to obtain precise relative relaxation times τα. Therefore larger single crystals
for transport properties measurements and better theoretically founded Hall expressions are
needed.

The σ -band contributions and their conductivity anisotropy were discussed for several
compounds in relation to the superconducting properties:

(a) ZrB2, NbB2 and TaB2 have a low Tc or are non-superconducting; these materials do not
have pure B:σ -band at EF;

(b) BeB2, a non-superconductor, and ScB2, a low-Tc-superconductor, have EF nearer the
σ -band edge, also their bands are considerably less anisotropic;

(c) with Al-doping in Mg1−x Alx B2 the experimental Tc reduces linearly with x ; in our results
σσ

a follows the same x-dependence; the σ -band anisotropy also diminishes with electron
doping.

The σ -band contributions and their anisotropy emerge as fundamental factors that may
play an important role in the superconducting mechanism of the MgB2 system.
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